MATH2048 Honours Linear Algebra II

Midterm Examination 2

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let $T = L_A : \mathbb{R}^4 \to \mathbb{R}^4$ where $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$. Find all eigenvalues of T and

their algebraic multiplicity $\mu_T(\lambda)$ as well as geometric multiplicity $\gamma_T(\lambda)$. Determine whether T is diagonalizable.

Solution. $f_T(t) = t(t-1)^3$. The distinct eigen values are 0 and 1.

• For $\lambda_1 = 0$, $A - \lambda_1 I_4 = A$, $\gamma_T(0) = \dim(N(A - \lambda_1 I_4)) = 4 - \operatorname{rank}(A) = 1$. $\mu_T(0) = 1$.

• For
$$\lambda_2 = 1$$
, $A - \lambda_1 I_4 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \end{pmatrix}$, $\gamma_T(1) = \dim(N(A - \lambda_2 I_4)) = 4 - \operatorname{rank}(A - \lambda_2 I_4) = 2$. But $\mu_T(1) = 3$.

Hence, T is not diagonalizable.

- 2. Let $V = M_{2\times 2}(\mathbb{R})$ and $T: V \to V$ be the linear transformation defined by T(M) = AMB, where $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$.
 - (a) Find a polynomial $g \in P_3(\mathbb{R})$ such that $T^4 = g(T)$.
 - (b) Let $M_0 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ and W be the *T*-cyclic subspace of V generated by M_0 . Find dim(W) and the characteristic polynomial of $T|_W$.

Solution.

- (a) Let β be the standard ordred basis for $M_{2\times 2}(\mathbb{R})$. Then $[T]_{\beta} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 \end{pmatrix}$ and $f_T(t) = t^2(t+1)^2 = t^4 + 2t^3 + t^2$. By Cayley thm, $f_T(T) = T_0$, i.e. $T^4 + 2T^3 + T^2 = T_0$. Let $g(t) = -2t^3 - t^2$, then $g \in P_3(\mathbb{R})$ and $T^4 = g(T)$. (b) By computation $M_0 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $T(M_0) = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$, $T^2(M_0) = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}$.
 - Then $T^2(M_0) = -2T(M_0) M_0$. Therefore, $\{M_0, T(M_0)\}$ forms a basis for W and dim(W) = 2. Since $M_0 + 2T(M_0) + T^2(M_0) = O$, one has $f_{T|W}(t) = (-1)^2(1+2t+t^2)$.

3. Let $T : \mathbb{C}^3 \to \mathbb{C}^3$ be a linear transformation defined by the matrix $A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$,

where $\lambda \in \mathbb{C} \setminus \{0\}$ is a nonzero complex number. Find all 1 dimensional and 2 dimensional *T*-invariant subspaces of \mathbb{C}^3 .

Solution.

Let W be a T-invariant subspace of V. Then W is $(T - \lambda I)$ -invariant too.

For any nonzero $v = (x, y, z)^t \in W$, then $(T - \lambda I)(v) = (y, z, 0)^t \in W$ and $(T - \lambda I)^2(v) = (z, 0, 0)^t \in W$.

- If dim(W) = 1, then W = span({v}). Thus (y, z, 0)^t = c(x, y, z)^t for some c ∈ C. Note that c ≠ 0 ⇒ z = 0 ⇒ y = 0 ⇒ x = 0 contradicting v ≠ 0. Therefore c = 0 ⇒ y = z = 0. One has W = span({(x, 0, 0)^t}) for x ∈ C \{0}. Conversely, if W = span({(x, 0, 0)^t}) for x ∈ C \ {0}, then W is 1d T-invariant space.
- If dim(W) = 2. We claim that z = 0, otherwise $\{(x, y, z)^t, (y, z, 0)^t, (z, 0, 0)^t\} \subset W$ is linearly independent subset, which implies dim $(W) \ge 3$. Therefore, z = 0 and $W \subset \{(a, b, 0) | a, b \in \mathbb{R}\}$. Since dim $(W) = 2 = \dim(\{(a, b, 0)^t | a, b \in \mathbb{R}\})$, one has $W = \{(a, b, 0)^t | a, b \in \mathbb{R}\}$ = span $(\{(x, y, 0)^t, (y, 0, 0)^t\})$, where $y \in \mathbb{C} \setminus \{0\}$.

Conversely, if $W = \text{span}(\{(x, y, 0)^t, (y, 0, 0)^t\})$ for $x \in \mathbb{C}$ and $y \in \mathbb{C} \setminus \{0\}$. Then W is a 2d T-invariant subspace.

4. (a) Let $A = (a_{ij})_{1 \le i,j \le n} \in M_{n \times n}(\mathbb{C})$, where a_{ij} is the *i*-th row, *j*-th column entry of A. Let λ be an eigenvalue of A. Show that:

$$\lambda \in \bigcup_{1 \le i \le n} \left\{ z \in \mathbb{C} : |z - a_{ii}| \le \sum_{1 \le j \le n, j \ne i} |a_{ij}| \right\}.$$

(b) Let V be a n-dimensional vector space over \mathbb{C} , with an ordered basis $\beta = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$. Given that $n \geq 100$. Consider a linear operator $T : V \to V$ defined by:

$$T(\mathbf{v_1}) = a_1 \mathbf{v_1} + b_{11} \mathbf{v_2} + b_{12} \mathbf{v_n}$$

$$T(\mathbf{v_n}) = a_n \mathbf{v_n} + b_{n1} \mathbf{v_1} + b_{n2} \mathbf{v_{n-1}}$$

$$T(\mathbf{v_k}) = a_k \mathbf{v_k} + b_{k1} \mathbf{v_{k+1}} + b_{k2} \mathbf{v_{k-1}} \text{ for } k = 2, 3, ..., n-1$$

Given that $|a_k| > |b_{k1}| + |b_{k2}|$ for all k. Using (a), show that all eigenvalues of T are non-zero.

Solution.

(a) λ is an eigenvalue of A, so Ax = λx for some nonzero x ∈ Cⁿ. Let x = (x₁,...,x_n)^t. Find i such that the element of x with the largest absolute value is x_i. Then x_i ≠ 0 since x ≠ 0.
Taking the *i*-th component of the equation 4x = λx one has ∑ⁿ = a_ix_i = λx.

Taking the *i*-th component of the equation $Ax = \lambda x$, one has $\sum_{j=0}^{n} a_{ij} x_j = \lambda x_i$. So $\sum_{j \neq i} a_{ij} x_j = (\lambda - a_{ii}) x_i$.

By triangle inequality, $|\lambda - a_{ii}| = |\sum_{j \neq i} a_{ij} \frac{x_j}{x_i}| \le \sum_{j \neq i} |a_{ij}|$ since $|\frac{x_j}{x_i}| \le 1$.

(b) If λ is an eigenvalue of T, then λ is an eigenvalue of $[T]_{\beta}$ and thus is an eigenvalue of $[T]_{\beta}^{t}$, the transpose of $[T]_{\beta}$. By (a), $|a_{k}| - |\lambda| \leq |\lambda - a_{k}| \leq |b_{k1}| + |b_{k2}| < |a_{k}|$, so $|\lambda| > 0$, which implies all eigenvalues of T are non-zero. 5. Let $T: V \to W$ be a linear transformation between the vector spaces V and W over \mathbb{C} . Let T^* be the transpose of T. Prove or disprove that $(W/R(T))^*$ is isomorphic to $N(T^*)$. If it is, please construct an isomorphism between $(W/R(T))^*$ and $N(T^*)$. If it is not, please give a rigorous proof. Please explain your answer with details. (Here, $(W/R(T))^*$ is the dual space of (W/R(T)).)

Solution. Consider

$$\Phi: (W/R(T))^* \to N(T^*)$$
$$h \mapsto \Phi(h)$$

defined by $\Phi(h)(w) = h(w + R(T))$ for all $h \in (W/R(T))^*$ and $w \in W$. We show that Φ is an isomorphism.

• Well-defined.

For any $h \in (W/R(T))^*$, $T^*(\Phi(h))(v) = (\Phi(h) \circ T)(v) = \Phi(h)(T(v)) = \Phi(T(v) + R(T)) = h(R(T)) = 0$ for any $v \in V$. Therefore $\Phi(h) \in N(T^*)$ for any $h \in (W/R(T))^*$.

Besides, if $\Phi(h_1) \neq \Phi(h_2)$, there exists $w \in W$ such that $\Phi(h_1)(w) \neq \Phi(h_2)(w)$, i.e. $h_1(w + R(T)) \neq h_2(w + R(T))$ So $h_1 \neq h_2$.

- Linear. It's trivial.
- Injective.

For any $h \in N(\Phi)$, $\Phi(h) = 0$. That is $h(w + R(T)) = \Phi(h)(w) = 0$ for all $w \in W$. So h = 0.

• Surjective.

For any $g \in N(T^*)$, define h by h(w + R(T)) = g(w). For any $w_1 + R(T) = w_2 + R(T)$, one has $w_1 - w_2 \in R(T)$. There exists $v_0 \in V$ such that $w_1 - w_2 = T(v_0)$ and $g(w_1 - w_2) = g(T(v_0)) = T^*(g)(v_0) = 0$ for $g \in N(T^*)$.

Therefore, $h(w_1+R(T)) = g(w_1) = g(w_2) = h(w_2+R(T))$, then h is well-defined. Since $h \in (W/R(T))^*$ and $\Phi(h) = g$, one has Φ is surjective.