
MATH2048 Honours Linear Algebra II

Midterm Examination 2

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let T = LA : R4 → R4 where A =


0 0 0 0
0 1 0 −1
0 0 1 1
−1 0 0 1

. Find all eigenvalues of T and

their algebraic multiplicity µT (λ) as well as geometric multiplicity γT (λ). Determine
whether T is diagonalizable.

Solution. fT (t) = t(t− 1)3. The distinct eigen values are 0 and 1.

• For λ1 = 0, A − λ1I4 = A, γT (0) = dim(N(A − λ1I4)) = 4 − rank(A) = 1.
µT (0) = 1.

• For λ2 = 1, A − λ1I4 =


−1 0 0 0
0 0 0 −1
0 0 0 1
−1 0 0 0

, γT (1) = dim(N(A − λ2I4)) =

4− rank(A− λ2I4) = 2. But µT (1) = 3.

Hence, T is not diagonalizable.



2. Let V = M2×2(R) and T : V → V be the linear transformation defined by T (M) =

AMB, where A =

(
1 0
1 1

)
and B =

(
0 0
1 −1

)
.

(a) Find a polynomial g ∈ P3(R) such that T 4 = g(T ).

(b) Let M0 =

(
1 −1
0 0

)
and W be the T -cyclic subspace of V generated by M0.

Find dim(W ) and the characteristic polynomial of T |W .

Solution.

(a) Let β be the standard ordred basis for M2×2(R). Then [T ]β =


0 1 0 0
0 −1 0 0
0 1 0 1
0 −1 0 −1


and fT (t) = t2(t + 1)2 = t4 + 2t3 + t2. By Cayley thm, fT (T ) = T0, i.e.
T 4 + 2T 3 + T 2 = T0. Let g(t) = −2t3 − t2, then g ∈ P3(R) and T 4 = g(T ).

(b) By computation M0 =

(
1 −1
0 0

)
, T (M0) =

(
−1 1
−1 1

)
, T 2(M0) =

(
1 −1
2 −2

)
.

Then T 2(M0) = −2T (M0) − M0. Therefore, {M0, T (M0)} forms a basis for
W and dim(W ) = 2. Since M0 + 2T (M0) + T 2(M0) = O, one has fT |W (t) =
(−1)2(1 + 2t+ t2).



3. Let T : C3 → C3 be a linear transformation defined by the matrix A =

λ 1 0
0 λ 1
0 0 λ

,

where λ ∈ C \ {0} is a nonzero complex number. Find all 1 dimensional and 2
dimensional T -invariant subspaces of C3.

Solution.

Let W be a T -invariant subspace of V . Then W is (T − λI)-invariant too.

For any nonzero v = (x, y, z)t ∈ W , then (T − λI)(v) = (y, z, 0)t ∈ W and (T −
λI)2(v) = (z, 0, 0)t ∈ W .

• If dim(W ) = 1, then W = span({v}). Thus (y, z, 0)t = c(x, y, z)t for some c ∈ C.

Note that c 6= 0 =⇒ z = 0 =⇒ y = 0 =⇒ x = 0 contradicting v 6= 0.

Therefore c = 0 =⇒ y = z = 0. One has W = span({(x, 0, 0)t}) for x ∈ C\{0}.
Conversely, if W = span({(x, 0, 0)t}) for x ∈ C \ {0}, then W is 1d T -invariant
space.

• If dim(W ) = 2. We claim that z = 0, otherwise {(x, y, z)t, (y, z, 0)t, (z, 0, 0)t} ⊂
W is linearly independent subset, which implies dim(W ) ≥ 3. Therefore, z = 0
and W ⊂ {(a, b, 0)|a, b ∈ R}.
Since dim(W ) = 2 = dim({(a, b, 0)t|a, b ∈ R}), one has W = {(a, b, 0)t|a, b ∈
R} = span({(x, y, 0)t, (y, 0, 0)t}), where y ∈ C \ {0}.
Conversely, if W = span({(x, y, 0)t, (y, 0, 0)t}) for x ∈ C and y ∈ C \ {0}. Then
W is a 2d T -invariant subspace.



4. (a) Let A = (aij)1≤i,j≤n ∈Mn×n(C), where aij is the i-th row, j-th column entry of
A. Let λ be an eigenvalue of A. Show that:

λ ∈
⋃

1≤i≤n

{
z ∈ C : |z − aii| ≤

∑
1≤j≤n,j 6=i

|aij|
}
.

(b) Let V be a n-dimensional vector space over C, with an ordered basis β =
{v1,v2, ...,vn}. Given that n ≥ 100. Consider a linear operator T : V → V
defined by:

T (v1) = a1v1 + b11v2 + b12vn

T (vn) = anvn + bn1v1 + bn2vn−1

T (vk) = akvk + bk1vk+1 + bk2vk−1 for k = 2, 3, ..., n− 1.

Given that |ak| > |bk1|+ |bk2| for all k. Using (a), show that all eigenvalues of T
are non-zero.

Solution.

(a) λ is an eigenvalue of A, so Ax = λx for some nonzero x ∈ Cn. Let x =
(x1, ..., xn)t. Find i such that the element of x with the largest absolute value is
xi. Then xi 6= 0 since x 6= 0.

Taking the i-th component of the equation Ax = λx, one has
∑n

j=0 aijxj = λxi.
So
∑

j 6=i aijxj = (λ− aii)xi.

By triangle inequality, |λ− aii| = |
∑

j 6=i aij
xj
xi
| ≤

∑
j 6=i |aij| since |xj

xi
| ≤ 1.

(b) If λ is an eigenvalue of T , then λ is an eigenvalue of [T ]β and thus is an eigenvalue
of [T ]tβ, the transpose of [T ]β.

By (a), |ak| − |λ| ≤ |λ − ak| ≤ |bk1| + |bk2| < |ak|, so |λ| > 0, which implies all
eigenvalues of T are non-zero.



5. Let T : V → W be a linear transformation between the vector spaces V and W over
C. Let T ∗ be the transpose of T . Prove or disprove that (W/R(T ))∗ is isomorphic to
N(T ∗). If it is, please construct an isomorphism between (W/R(T ))∗ and N(T ∗). If
it is not, please give a rigorous proof. Please explain your answer with details. (Here,
(W/R(T ))∗ is the dual space of (W/R(T )).)

Solution. Consider

Φ : (W/R(T ))∗ → N(T ∗)

h 7→ Φ(h)

defined by Φ(h)(w) = h(w+R(T )) for all h ∈ (W/R(T ))∗ and w ∈ W . We show that
Φ is an isomorphism.

• Well-defined.

For any h ∈ (W/R(T ))∗, T ∗(Φ(h))(v) = (Φ(h)◦T )(v) = Φ(h)(T (v)) = Φ(T (v)+
R(T )) = h(R(T )) = 0 for any v ∈ V . Therefore Φ(h) ∈ N(T ∗) for any h ∈
(W/R(T ))∗.

Besides, if Φ(h1) 6= Φ(h2), there exists w ∈ W such that Φ(h1)(w) 6= Φ(h2)(w),
i.e. h1(w +R(T )) 6= h2(w +R(T )) So h1 6= h2.

• Linear. It’s trivial.

• Injective.

For any h ∈ N(Φ), Φ(h) = 0. That is h(w + R(T )) = Φ(h)(w) = 0 for all
w ∈ W . So h = 0.

• Surjective.

For any g ∈ N(T ∗), define h by h(w +R(T )) = g(w).

For any w1 +R(T ) = w2 +R(T ), one has w1 −w2 ∈ R(T ). There exists v0 ∈ V
such that w1 − w2 = T (v0) and g(w1 − w2) = g(T (v0)) = T ∗(g)(v0) = 0 for
g ∈ N(T ∗).

Therefore, h(w1+R(T )) = g(w1) = g(w2) = h(w2+R(T )), then h is well-defined.
Since h ∈ (W/R(T ))∗ and Φ(h) = g, one has Φ is surjective.


