MATH2048 Honours Linear Algebra II
 Midterm Examination 2

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let $T=L_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ where $A=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 1\end{array}\right)$. Find all eigenvalues of T and their algebraic multiplicity $\mu_{T}(\lambda)$ as well as geometric multiplicity $\gamma_{T}(\lambda)$. Determine whether T is diagonalizable.
Solution. $f_{T}(t)=t(t-1)^{3}$. The distinct eigen values are 0 and 1 .

- For $\lambda_{1}=0, A-\lambda_{1} I_{4}=A, \gamma_{T}(0)=\operatorname{dim}\left(N\left(A-\lambda_{1} I_{4}\right)\right)=4-\operatorname{rank}(A)=1$. $\mu_{T}(0)=1$.
- For $\lambda_{2}=1, A-\lambda_{1} I_{4}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0\end{array}\right), \gamma_{T}(1)=\operatorname{dim}\left(N\left(A-\lambda_{2} I_{4}\right)\right)=$ $4-\operatorname{rank}\left(A-\lambda_{2} I_{4}\right)=2$. But $\mu_{T}(1)=3$.

Hence, T is not diagonalizable.
2. Let $V=M_{2 \times 2}(\mathbb{R})$ and $T: V \rightarrow V$ be the linear transformation defined by $T(M)=$ $A M B$, where $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right)$.
(a) Find a polynomial $g \in P_{3}(\mathbb{R})$ such that $T^{4}=g(T)$.
(b) Let $M_{0}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ and W be the T-cyclic subspace of V generated by M_{0}. Find $\operatorname{dim}(W)$ and the characteristic polynomial of $\left.T\right|_{W}$.

Solution.

(a) Let β be the standard ordred basis for $M_{2 \times 2}(\mathbb{R})$. Then $[T]_{\beta}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1\end{array}\right)$ and $f_{T}(t)=t^{2}(t+1)^{2}=t^{4}+2 t^{3}+t^{2}$. By Cayley thm, $f_{T}(T)=T_{0}$, i.e. $T^{4}+2 T^{3}+T^{2}=T_{0}$. Let $g(t)=-2 t^{3}-t^{2}$, then $g \in P_{3}(\mathbb{R})$ and $T^{4}=g(T)$.
(b) By computation $M_{0}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right), T\left(M_{0}\right)=\left(\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right), T^{2}\left(M_{0}\right)=\left(\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right)$. Then $T^{2}\left(M_{0}\right)=-2 T\left(M_{0}\right)-M_{0}$. Therefore, $\left\{M_{0}, T\left(M_{0}\right)\right\}$ forms a basis for W and $\operatorname{dim}(W)=2$. Since $M_{0}+2 T\left(M_{0}\right)+T^{2}\left(M_{0}\right)=O$, one has $f_{\left.T\right|_{W}}(t)=$ $(-1)^{2}\left(1+2 t+t^{2}\right)$.
3. Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear transformation defined by the matrix $A=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$, where $\lambda \in \mathbb{C} \backslash\{0\}$ is a nonzero complex number. Find all 1 dimensional and 2 dimensional T-invariant subspaces of \mathbb{C}^{3}.

Solution.

Let W be a T-invariant subspace of V. Then W is $(T-\lambda I)$-invariant too.
For any nonzero $v=(x, y, z)^{t} \in W$, then $(T-\lambda I)(v)=(y, z, 0)^{t} \in W$ and $(T-$ $\lambda I)^{2}(v)=(z, 0,0)^{t} \in W$.

- If $\operatorname{dim}(W)=1$, then $W=\operatorname{span}(\{v\})$. Thus $(y, z, 0)^{t}=c(x, y, z)^{t}$ for some $c \in \mathbb{C}$. Note that $c \neq 0 \Longrightarrow z=0 \Longrightarrow y=0 \Longrightarrow x=0$ contradicting $v \neq 0$.
Therefore $c=0 \Longrightarrow y=z=0$. One has $W=\operatorname{span}\left(\left\{(x, 0,0)^{t}\right\}\right)$ for $x \in \mathbb{C} \backslash\{0\}$. Conversely, if $W=\operatorname{span}\left(\left\{(x, 0,0)^{t}\right\}\right)$ for $x \in \mathbb{C} \backslash\{0\}$, then W is $1 \mathrm{~d} T$-invariant space.
- If $\operatorname{dim}(W)=2$. We claim that $z=0$, otherwise $\left\{(x, y, z)^{t},(y, z, 0)^{t},(z, 0,0)^{t}\right\} \subset$ W is linearly independent subset, which implies $\operatorname{dim}(W) \geq 3$. Therefore, $z=0$ and $W \subset\{(a, b, 0) \mid a, b \in \mathbb{R}\}$.
Since $\operatorname{dim}(W)=2=\operatorname{dim}\left(\left\{(a, b, 0)^{t} \mid a, b \in \mathbb{R}\right\}\right)$, one has $W=\left\{(a, b, 0)^{t} \mid a, b \in\right.$ $\mathbb{R}\}=\operatorname{span}\left(\left\{(x, y, 0)^{t},(y, 0,0)^{t}\right\}\right)$, where $y \in \mathbb{C} \backslash\{0\}$.
Conversely, if $W=\operatorname{span}\left(\left\{(x, y, 0)^{t},(y, 0,0)^{t}\right\}\right)$ for $x \in \mathbb{C}$ and $y \in \mathbb{C} \backslash\{0\}$. Then W is a $2 \mathrm{~d} T$-invariant subspace.

4. (a) Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in M_{n \times n}(\mathbb{C})$, where $a_{i j}$ is the i-th row, j-th column entry of A. Let λ be an eigenvalue of A. Show that:

$$
\lambda \in \bigcup_{1 \leq i \leq n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{1 \leq j \leq n, j \neq i}\left|a_{i j}\right|\right\}
$$

(b) Let V be a n-dimensional vector space over \mathbb{C}, with an ordered basis $\beta=$ $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. Given that $n \geq 100$. Consider a linear operator $T: V \rightarrow V$ defined by:

$$
\begin{aligned}
& T\left(\mathbf{v}_{\mathbf{1}}\right)=a_{1} \mathbf{v}_{\mathbf{1}}+b_{11} \mathbf{v}_{\mathbf{2}}+b_{12} \mathbf{v}_{\mathbf{n}} \\
& T\left(\mathbf{v}_{\mathbf{n}}\right)=a_{n} \mathbf{v}_{\mathbf{n}}+b_{n 1} \mathbf{v}_{\mathbf{1}}+b_{n 2} \mathbf{v}_{\mathbf{n}-\mathbf{1}} \\
& T\left(\mathbf{v}_{\mathbf{k}}\right)=a_{k} \mathbf{v}_{\mathbf{k}}+b_{k 1} \mathbf{v}_{\mathbf{k}+\mathbf{1}}+b_{k 2} \mathbf{v}_{\mathbf{k}-\mathbf{1}} \text { for } k=2,3, \ldots, n-1 .
\end{aligned}
$$

Given that $\left|a_{k}\right|>\left|b_{k 1}\right|+\left|b_{k 2}\right|$ for all k. Using (a), show that all eigenvalues of T are non-zero.

Solution.

(a) λ is an eigenvalue of A, so $A x=\lambda x$ for some nonzero $x \in \mathbb{C}^{n}$. Let $x=$ $\left(x_{1}, \ldots, x_{n}\right)^{t}$. Find i such that the element of x with the largest absolute value is x_{i}. Then $x_{i} \neq 0$ since $x \neq 0$.
Taking the i-th component of the equation $A x=\lambda x$, one has $\sum_{j=0}^{n} a_{i j} x_{j}=\lambda x_{i}$. So $\sum_{j \neq i} a_{i j} x_{j}=\left(\lambda-a_{i i}\right) x_{i}$.
By triangle inequality, $\left|\lambda-a_{i i}\right|=\left|\sum_{j \neq i} a_{i j} \frac{x_{j}}{x_{i}}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|$ since $\left|\frac{x_{j}}{x_{i}}\right| \leq 1$.
(b) If λ is an eigenvalue of T, then λ is an eigenvalue of $[T]_{\beta}$ and thus is an eigenvalue of $[T]_{\beta}^{t}$, the transpose of $[T]_{\beta}$.
By (a), $\left|a_{k}\right|-|\lambda| \leq\left|\lambda-a_{k}\right| \leq\left|b_{k 1}\right|+\left|b_{k 2}\right|<\left|a_{k}\right|$, so $|\lambda|>0$, which implies all eigenvalues of T are non-zero.
5. Let $T: V \rightarrow W$ be a linear transformation between the vector spaces V and W over \mathbb{C}. Let T^{*} be the transpose of T. Prove or disprove that $(W / R(T))^{*}$ is isomorphic to $N\left(T^{*}\right)$. If it is, please construct an isomorphism between $(W / R(T))^{*}$ and $N\left(T^{*}\right)$. If it is not, please give a rigorous proof. Please explain your answer with details. (Here, $(W / R(T))^{*}$ is the dual space of $(W / R(T))$.)
Solution. Consider

$$
\begin{aligned}
\Phi:(W / R(T))^{*} & \rightarrow N\left(T^{*}\right) \\
h & \mapsto \Phi(h)
\end{aligned}
$$

defined by $\Phi(h)(w)=h(w+R(T))$ for all $h \in(W / R(T))^{*}$ and $w \in W$. We show that Φ is an isomorphism.

- Well-defined.

For any $h \in(W / R(T))^{*}, T^{*}(\Phi(h))(v)=(\Phi(h) \circ T)(v)=\Phi(h)(T(v))=\Phi(T(v)+$ $R(T))=h(R(T))=0$ for any $v \in V$. Therefore $\Phi(h) \in N\left(T^{*}\right)$ for any $h \in$ $(W / R(T))^{*}$.
Besides, if $\Phi\left(h_{1}\right) \neq \Phi\left(h_{2}\right)$, there exists $w \in W$ such that $\Phi\left(h_{1}\right)(w) \neq \Phi\left(h_{2}\right)(w)$, i.e. $h_{1}(w+R(T)) \neq h_{2}(w+R(T))$ So $h_{1} \neq h_{2}$.

- Linear. It's trivial.
- Injective.

For any $h \in N(\Phi), \Phi(h)=0$. That is $h(w+R(T))=\Phi(h)(w)=0$ for all $w \in W$. So $h=0$.

- Surjective.

For any $g \in N\left(T^{*}\right)$, define h by $h(w+R(T))=g(w)$.
For any $w_{1}+R(T)=w_{2}+R(T)$, one has $w_{1}-w_{2} \in R(T)$. There exists $v_{0} \in V$ such that $w_{1}-w_{2}=T\left(v_{0}\right)$ and $g\left(w_{1}-w_{2}\right)=g\left(T\left(v_{0}\right)\right)=T^{*}(g)\left(v_{0}\right)=0$ for $g \in N\left(T^{*}\right)$.
Therefore, $h\left(w_{1}+R(T)\right)=g\left(w_{1}\right)=g\left(w_{2}\right)=h\left(w_{2}+R(T)\right)$, then h is well-defined. Since $h \in(W / R(T))^{*}$ and $\Phi(h)=g$, one has Φ is surjective.

